The Design and
Implementation of

<

FUSIONDB

XML Prague
2019-02-08

Adam Retter

N adam@evolvedbinary.com 4 ~’
y) @adamretter }
EVOLVED BINARY

Why did we start in 20147

Personal Concerns

= Open Source NXDs problems/limitations are not being
addresed

= Commercial NXDs are Expensive and not Open Source
= New NoSQL (JSON) document db are out-innovating us

= 10 Years invested in Open Source NXD, unhappy with
progress

Commercial Concerns from Customers
= Help! Our Open Source NXD sometimes:

Crashes and Corrupts the database

Stops responding

Won't Scale with new servers/users \7W b

EVOLVED BINARY

OS NXD - Known Issues ~2014

Reported by Users
= Stability - Responsiveness / Deadlocks
= Operational Reliability - Backup / Corruption / Fail-over
= Missing Feature - Key/Value Metadata for Documents

= Missing Feature - Triple/Graph linking for inter/cross-
document references

Recognised by Developers

= Correctness - Crash Recovery / Deadlock Avoidance /
Deadlock Resolution / ACID

= Performance - Reducing Contention / Avoiding System
Maintenance mutex

= Missing Features - Multi Model / Clustering \7W b

EVOLVED BINARY

Hold My Beer...

¥ | Gotta
& Fix This!

VY

EVOLVED BINARY

Can we fix an existing NXD?

Project Health?
= |ssues - Rate of decay, i.e. Open vs Closed over time
= Attracts new contributors?
= Attracts new and varied users?
= How do contributors pay their bills?

Contributor Constraints?
= How long to get PRs reviewed?
= Open to radical changes? Incremental vs Big-bang?
= Other developers with time/knowledge to review PRs

License
= Business friendly? CLA?

VY

EVOLVED BINARY

Reputation - Perceived or otherwise

Time to build something new

Project "Granite"
= Research and Development
= Primary Focus on Correctness and Stability
o Never become unresponsive
o Never crash
o Never lose data or corrupt the database

Should become Open Source
= Should be appealing to Commercial enterprises
= Open Source license choice(s) vs Revenue opportunities

Don't reinvent wheels!
= Reuse - Faster time to market
= Developers know eXist-db... Fork it! ‘7“ 2

EVOLVED BINARY

First... Replace eXist-db's
Storage Engine

Why?
= We don't trust it's correctness
= Old and Creaky? - (dbXML ~2001)
Improved with caching and journaling
= Not Scalable - single-threaded read/write
= Classic B+ Tree
= Why not fix it?
Newer/better algorthms exist - B-link Tree, Bw Tree, etc.

We want a giant-leap, not an incremental improvement

M

EVOLVED BINARY

How does a NXD Store an
XML Document Anyway?

...Shredding!

Given some very simple XML
- fruits.xml

<fruits>
<fruit>
<name>Apple</name>
<colour>Green</colour>
</fruit>
<fruit>
<name>BRanana</name>
<colour>Yellow</colour>
</fruit>
</fruits>

O W O J o O x W DN

H

M

EVOLVED BINARY

1. Number the tree (DLN)

fruits.xml: docld=6

fruits
1]
Ya¥;

fruit
[1.2]

name
[1.1.1]

colour
[1.2.2]

| |
“"Apple" "Green" ""Banana" "Yellow"
] [Tl (e [enar]

74 Iy »

EVOLVED BINARY

colour
[1.1.2]

name
[1.2.1]

2. Extract Symbols

Symbol Table

_;51 Symbol i

q"fruits
fruit
name
colour

[-hl.-l-lh-ll—‘

Appla” "G rea " “Banana "Yellow"
[1.1.1. [1.2.1. [1.2.2.1]

74 Iy »

EVOLVED BINARY

3. Store DOM

Persistent DOM (dom.dbx)

B+Tree

5 6:[1.1.1]

6:[1.1.1.1] f

!
‘5: [1.2.1]i
< Y

DocId: [NodeId]

ts: (1.2.1.1]

4

‘6:[1.1.2]i {6:[1.2.2ﬂ JE:[l.l.Z.lﬂ

Y

!E: [1.2.2.1ﬂ

Data Pages (4KB)

text{yellow}

element{symbol=1}

element{symbol=2}

text{banana}

text{apple}

text{green}

A

EVOLVED BINARY

4. Store Symbols
+ Collection Entry

Symbol Table (symbols.dbx)

Variable Length Records

5 1,fruits,2,fruit,3,name,4,

colour i

Collection Store (collections.dbx)

B+Tree

5£ollectinn:[fdb]

Collection: [URI]
Document,1,XML: [E]j Document,colld, type: [docId]

Data Pages (4KB)

{colld=1, sublol$=0,permissions=@77

'@, created=2018}

{name=fruits.xml,permissions=077@,children=11, created=2018, lastMod=2018 , pad

jeCount?,dtd=?}

s~

EVOLVED BINARY

New Storage Engine

We won't develop our own!
= |t's hard (to get correct)!
= Other well-resourced projects available for reuse
= We would rather focus on the larger DBMS

Choosing a suitable engine
= Other Java Database B+ Trees are unsuitable
Examined - Apache Derby, H2, HSQLDB, and Neo4;
= Few Open Source pure Storage Engines in Java
Discounted MapDB - known issues
= |dentified 3 possibilities:
LMDB - B-Tree written in C

ForestDB - HB+-Trie written in C++11
My

RocksDB - LSM written in C++14
EVOLVED BINARY

Why we Adopted RocksDB

Fork of Google's LevelDB
= Performance Improvements for concurrency and I/0O
= Optimised for SSDs

Large Open Source community with commercial interests
= e.g. Facebook, AirBnb, LinkedIn, NetFlix, Uber, Yahoo, etc.

Rich feature set
= [SM-tree (Log Structured Merge Tree)
= MVCC (Multi-Version Concurrency Control)
= ACID
Built-in Atomicity and Durability
Offers primitives for building Consistency and Isolation

= Column Families ‘7“ >

EVOLVED BINARY

How do we store XML into
RocksDB?

...Mooor Shredding! &)

EEEEEEEEEEEEE

Storing XML in RocksDB

We still:

= Number the tree with DLN

= Extract Symbols

= Shred each node into a key/value pair
We do NOT use eXist's B+Tree or Variable Record Store
Instead, we use RocksDB Column Families

= Eachis an LSM-tree. Share a WAL

= For each component

Persisent DOM Column Family - XML_DOM_STORE

Symbol Table Column Families - SYMBOL_STORE, NAME_INDEX,
NAME_ID_INDEX

Collection Store Column Family - COLLECTION_STORE

VY

EVOLVED BINARY

RocksDB's LSM Tree

Writes

Reads

\1hmTable'-

(Skip List)]

64 MB

Bloom

Level @ 7 Filter
1A jﬁ
SSTable & 5
(Flushed | 4
Memtable) |~ ;f::'::' f
s [w3
{k1..k99} o {k1@@..k199} k208 . .k799
64 MB -’ 54 MB 64 MB
Target
Level 2 SST 2.5 B
640 MB’
Target
Level 3 SST 25 GB
6.4 GB
...Level 7

74 Iy »

EVOLVED BINARY

XML in RocksDB's SSTable File

Data Data Data Meta Meta Index Index Footer
(4 KB) | (4 KB) | (4 KB) o (filter) | (stats) o Meta Data
Key Key Key
Value Value Value
! , Key - Value
.L.: 6,1 —EIEIHEI"It{E}I’mhﬂl=1}
"""""" ettt 6,101 - element{symbol=2}
----- 6,1.1.1 - element{symbol=3}
6,1.1.1.1 - text{Apple}
6,1.1.2 - element{symbol=4}
6,1.1.2.1 - text{Green}
6,1.2 - element{symbol=2}
6,1.2.1 - element{symbol=3}
6,1.2.1.1 - text{Banana}
6,1.2.2 - element{symbol=4}
6,1.2.2.1 - text{Yellow}

79 Iy »

EVOLVED BINARY

ACID Transactions

eXist-db lacks strong transaction semantics
= Txn - Log commit/abort just for Crash Recovery
= Mostly just the Durability of ACID
= |solation level: ~Read Uncommitted

Our Transactions
= RocksDB ensures Atomicity and Durability
= We add Consistency and Isolation
= Begin Transaction creates a db Snapshot
= Each Transaction has an in-memory Write Batch
Write - only to in-memory Write Batch
Read - try in-memory write batch, fallback to Snapshot

= |solation level: >= Snapshot Isolation < My

EVOLVED BINARY

Transactions for Users

Each public API call is a transaction
= e.g. REST / WebDAV / RESTXQ / XML-RPC / XML:DB
= guto-abort on exception
= guto-commit when the call returns data

Each XQuery is a transaction
= guto-abort if the query raises an error
= guto-commit when the query completes
= Begin Transaction creates a db Snapshot
= XQuery 3.0 try/catch
try - begins a new sub-transaction

catch - auto-abort, the operations in the try body are undone
Sub-transactions can be nested, just like try/catch \7W b

EVOLVED BINARY

Other new features include...

Key/Value Model
= Metadata for Documents and Collections
= Searchable from XQuery

Online Backup
= Lock free
= Checkpoint Backup
= Full Document Export

UUID Locators
= Persist across backups and nodes

BLOB Store

= Deduplication My

EVOLVED BINARY

Reflections

Many Changes Upstreamed
= eXist-db - Locking, BLOB Store, Concurrency, etc.
= RocksDB - further Java APIs and improved NI performance

With hindsight...
= Wouldn't fork eXist-db...
Too much time spent discovering and fixing bugs
Start with a green field, add eXist-db compatible APIs
= Much more work than anticipated

Today, new storage engines
= FoundationDB / BadgerDB / FASTER

VY

EVOLVED BINARY

On the roadmap...

Benchmarking and Performance
JSON Native

Virtualised Collections
Distributed Cluster

Graph Model

XQuery compilation to native
CPU/GPU code

A

»

EVOLVED BINARY

