
Adam RetterAdam Retter

adam@evolvedbinary.comadam@evolvedbinary.com

@adamretter@adamretter

The Design andThe Design and
Implementation ofImplementation of

XML Prague
2019-02-08

Why did we start in 2014?Why did we start in 2014?
Personal Concerns

Open Source NXDs problems/limitations are not being
addresed
Commercial NXDs are Expensive and not Open Source
New NoSQL (JSON) document db are out-innovating us
10 Years invested in Open Source NXD, unhappy with
progress

Commercial Concerns from Customers
Help! Our Open Source NXD sometimes:

Crashes and Corrupts the database

Stops responding

Won't Scale with new servers/users

Reported by Users
Stability - Responsiveness / Deadlocks
Operational Reliability - Backup / Corruption / Fail-over
Missing Feature - Key/Value Metadata for Documents
Missing Feature - Triple/Graph linking for inter/cross-
document references

Recognised by Developers
Correctness - Crash Recovery / Deadlock Avoidance /
Deadlock Resolution / ACID
Performance - Reducing Contention / Avoiding System
Maintenance mutex
Missing Features - Multi Model / Clustering

OS NXD - Known Issues ~2014OS NXD - Known Issues ~2014

Hold My Beer...Hold My Beer...

I GottaI Gotta
Fix This!Fix This!

Project Health?
Issues - Rate of decay, i.e. Open vs Closed over time
Attracts new contributors?
Attracts new and varied users?
How do contributors pay their bills?

Contributor Constraints?
How long to get PRs reviewed?
Open to radical changes? Incremental vs Big-bang?
Other developers with time/knowledge to review PRs

License
Business friendly? CLA?

Reputation - Perceived or otherwise

Can we fix an existing NXD?Can we fix an existing NXD?

Project "Granite"
Research and Development
Primary Focus on Correctness and Stability

Never become unresponsive
Never crash
Never lose data or corrupt the database

Should become Open Source
Should be appealing to Commercial enterprises
Open Source license choice(s) vs Revenue opportunities

Don't reinvent wheels!
Reuse - Faster time to market
Developers know eXist-db... Fork it!

Time to build something newTime to build something new

Why?
We don't trust it's correctness
Old and Creaky? - (dbXML ~2001)

Improved with caching and journaling

Not Scalable - single-threaded read/write
Classic B+ Tree
Why not fix it?

Newer/better algorthms exist - B-link Tree, Bw Tree, etc.

We want a giant-leap, not an incremental improvement

First... Replace eXist-db'sFirst... Replace eXist-db's
Storage EngineStorage Engine

How does a NXD Store anHow does a NXD Store an
XML Document Anyway?XML Document Anyway?

...Shredding!...Shredding!

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

<fruits>
 <fruit>
 <name>Apple</name>
 <colour>Green</colour>
 </fruit>
 <fruit>
 <name>Banana</name>
 <colour>Yellow</colour>
 </fruit>
</fruits>

Given some very simple XMLGiven some very simple XML
- - fruits.xmlfruits.xml

1. Number the tree (DLN)1. Number the tree (DLN)
fruits.xml: docId=6

2. Extract Symbols2. Extract Symbols

3. Store DOM3. Store DOM

4. Store Symbols4. Store Symbols
 + Collection Entry + Collection Entry

We won't develop our own!
It's hard (to get correct)!
Other well-resourced projects available for reuse
We would rather focus on the larger DBMS

Choosing a suitable engine
Other Java Database B+ Trees are unsuitable

Examined - Apache Derby, H2, HSQLDB, and Neo4j

Few Open Source pure Storage Engines in Java
Discounted MapDB - known issues

Identified 3 possibilities:
LMDB - B-Tree written in C

ForestDB - HB+-Trie written in C++11

RocksDB - LSM written in C++14

New Storage EngineNew Storage Engine

Fork of Google's LevelDB
Performance Improvements for concurrency and I/O
Optimised for SSDs

Large Open Source community with commercial interests
e.g. Facebook, AirBnb, LinkedIn, NetFlix, Uber, Yahoo, etc.

Rich feature set
LSM-tree (Log Structured Merge Tree)
MVCC (Multi-Version Concurrency Control)
ACID

Built-in Atomicity and Durability
Offers primitives for building Consistency and Isolation

Column Families

Why we Adopted RocksDBWhy we Adopted RocksDB

How do we store XML intoHow do we store XML into
RocksDB?RocksDB?

...Mooor Shredding!...Mooor Shredding!

We still:
Number the tree with DLN
Extract Symbols
Shred each node into a key/value pair

We do NOT use eXist's B+Tree or Variable Record Store
Instead, we use RocksDB Column Families

Each is an LSM-tree. Share a WAL
For each component

Persisent DOM Column Family - XML_DOM_STORE

Symbol Table Column Families - SYMBOL_STORE, NAME_INDEX,
NAME_ID_INDEX

Collection Store Column Family - COLLECTION_STORE

Storing XML in RocksDBStoring XML in RocksDB

RocksDB's LSM TreeRocksDB's LSM Tree

XML in RocksDB's SSTable FileXML in RocksDB's SSTable File

eXist-db lacks strong transaction semantics
Txn - Log commit/abort just for Crash Recovery
Mostly just the Durability of ACID
Isolation level: ~Read Uncommitted

Our Transactions
RocksDB ensures Atomicity and Durability
We add Consistency and Isolation
Begin Transaction creates a db Snapshot
Each Transaction has an in-memory Write Batch

Write - only to in-memory Write Batch

Read - try in-memory write batch, fallback to Snapshot

Isolation level: >= Snapshot Isolation

ACID TransactionsACID Transactions

Each public API call is a transaction
e.g. REST / WebDAV / RESTXQ / XML-RPC / XML:DB
auto-abort on exception
auto-commit when the call returns data

Each XQuery is a transaction
auto-abort if the query raises an error
auto-commit when the query completes
Begin Transaction creates a db Snapshot
XQuery 3.0 try/catch

try - begins a new sub-transaction

catch - auto-abort, the operations in the try body are undone

Sub-transactions can be nested, just like try/catch

Transactions for UsersTransactions for Users

Key/Value Model
Metadata for Documents and Collections
Searchable from XQuery

Online Backup
Lock free
Checkpoint Backup
Full Document Export

UUID Locators
Persist across backups and nodes

BLOB Store
Deduplication

Other new features include...Other new features include...

Many Changes Upstreamed
eXist-db - Locking, BLOB Store, Concurrency, etc.
RocksDB - further Java APIs and improved JNI performance

With hindsight...
Wouldn't fork eXist-db...

Too much time spent discovering and fixing bugs
Start with a green field, add eXist-db compatible APIs

Much more work than anticipated

Today, new storage engines
FoundationDB / BadgerDB / FASTER

ReflectionsReflections

Benchmarking and Performance

JSON Native

Virtualised Collections

Distributed Cluster

Graph Model

XQuery compilation to native
CPU/GPU code

On the roadmap...On the roadmap...

